SH-II/CSC/202/C4/18

B.Sc. Semester-II (Honours) Examination, 2018 COMPUTER SCIENCE (H)

Subject Code: 21502 Course Code: SH/CSC/202/C4

Course Title: Discrete Structures

Time: 2 Hrs. Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

 $2 \times 5 = 10$

- (a) What is countably infinite set?
- (b) What is Pigeonhole principle?
- (c) What is the use of asymptotic notations?
- (d) What is recurrence tree?
- (e) What do you mean by a graph?
- (f) What is Hamiltonian path?
- (g) What is tautology?
- (h) Express if-then operator (\rightarrow) in terms of the basic propositional operators (\lor, \land, \lnot) .
- **2.** Answer *any four* questions:

 $5 \times 4 = 20$

- (a) Explain bijective relation with an example. What is closure property?
- (b) Discuss big-oh (o) and big-omega (Ω) notations with examples.
- (c) Solve the recurrence relation:

$$a_n = a_{n-1} + 2a_{n-2}$$
 with $a_0 = 2 \& a_1 = 7$

- (d) Show that for any graph the number of odd-degree vertices is always even.
- (e) Write Kruskal's algorithm for finding MST.
- (f) What is Hamiltonian path and Hamiltonian circuit? Explain with example.

3+2=5

3. Answer *any one* question:

10×1=10

- (a) In how many different ways can the letters of the word 'OPTICAL' be arranged so that the vowels come together? Using mathematical induction prove that $\forall n \ge 1, 8^n 3^n$ is divisible by 5. 6+4=10
- (b) State and prove the propositional logic version of De Morgan's law for two variables.

Consider the following propositions:

p: Mr A is smart

q: Mr A is honest

Express the following statement in terms of p and q.

Mr. A is smart is necessary and sufficient for Mr A to be honest.

6+4=10

BNK21502